By Topic

Enhancing ADC resolution through Field Programmable Analog Array dynamic reconfiguration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Morales, D.P. ; Dept. Electron. & Comput. Technol., Univ. of Granada, Granada ; Garcia, A. ; Palma, A.J. ; Carvajal, M.A.
more authors

This work describes an analog reconfiguration technique for acquisition and processing of analog sensor signals that involves field programmable analog arrays (FPAAs) and field programmable gate arrays (FPGAs). The main objective is to exploit their natural reconfiguration capabilities that allow the increase of the analog-to-digital conversion (ADC) resolution and an adaptive post processing of the digital signal. This work is completed by the demonstration of this technique with an NTC temperature sensor signal, increasing the ADC resolution. The proposed system acquires the analog signal with filtering, amplifications and ADC being performed on the FPAA, while dynamically tuning the analog conditioning on the FPAA; after that, the FPGA processes the digital signal and delivers the final result to the end user, also involving the use of an embedded PicoBlaze.

Published in:

Field Programmable Logic and Applications, 2008. FPL 2008. International Conference on

Date of Conference:

8-10 Sept. 2008