By Topic

Efficient Kernel Orthonormalized PLS for Remote Sensing Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
JerÓnimo Arenas-Garcia ; Dept. of Signal Theor. & Commun., Univ. Carlos III de Madrid, Madrid ; Gustavo Camps-Valls

This paper studies the performance and applicability of a novel kernel partial least squares (KPLS) algorithm for nonlinear feature extraction in the context of remote sensing applications. The so-called kernel orthonormalized PLS algorithm with reduced complexity (rKOPLS) has the following two core parts: (1) a kernel version of OPLS (called KOPLS) and (2) a sparse approximation for large-scale data sets, which ultimately leads to the rKOPLS algorithm. The method is theoretically analyzed in terms of computational burden and memory requirements and is tested in common remote sensing applications: multi- and hyperspectral image classification and biophysical parameter estimation problems. The proposed method largely outperforms the traditional (linear) PLS algorithm and demonstrates good capabilities in terms of expressive power of the extracted nonlinear features, accuracy, and scalability as compared to the standard KPLS.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:46 ,  Issue: 10 )