By Topic

Computation of 3-D Sensitivity Coefficients in Magnetic Induction Tomography Using Boundary Integral Equations and Radial Basis Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. H. Pham ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC ; A. J. Peyton

This paper presents a method for the numerical computation of 3-D sensitivity coefficients of a target object in magnetic induction tomography (MIT). The sensitivity coefficient at a point is defined as the dot product of electromagnetic fields produced by unit current flowing in the excitation and the detector coil. In this paper, the fields are governed by a set of boundary integral equations (BIEs). Numerical results demonstrate that the fields on the boundary and interior volume domain of the target can be accurately represented by radial basis functions (RBFs). The paper compares numerical solutions of the BIEs based on RBFs with analytical solutions and boundary element solutions.

Published in:

IEEE Transactions on Magnetics  (Volume:44 ,  Issue: 10 )