By Topic

Non-collective parallel I/O for global address space programming models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Krishnamoorthy, S. ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH ; Canovas, J.P. ; Tipparaju, V. ; Nieplocha, Jarek
more authors

Achieving high performance for out-of-core applications typically involves explicit management of the movement of data between the disk and the physical memory. We are developing a programming environment in which the different levels of the memory hierarchy are handled efficiently in a unified transparent framework. In this paper, we present our experiences with implementing efficient non-collective I/O (GPCIO) as part of this framework. As a generalization of the remote procedure call (RPC) that was used as a foundation for the Sun NFS system, we developed a global procedure call (GPC) to invoke procedures on a remote node to handle non-collective I/O. We consider alternative approaches that can be employed in implementing this functionality. The approaches are evaluated using a representative computation from quantum chemistry. The results demonstrate that GPC-IO achieves better absolute execution times, strong-scaling, and weak-scaling than the alternatives considered.

Published in:

Cluster Computing, 2007 IEEE International Conference on

Date of Conference:

17-20 Sept. 2007