Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Chebyshev Affine-Arithmetic-Based Parametric Yield Prediction Under Limited Descriptions of Uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jin Sun ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ ; Jun Li ; Dongsheng Ma ; Wang, J.M.

Due to the hard-to-measure distributions of real process data, it is difficult to provide accurate parametric yield prediction for modern circuit design. Most existing approaches are not able to handle the uncertain distribution properties coming from the process data. Other approaches are inadequate in considering correlations among the distributions of variations. This paper suggests a new approach that not only takes care of correlations among distributions but also provides a low-cost and efficient computation scheme. The proposed method approximates the parameter variations with Chebyshev affine arithmetic (CAA) to capture both the uncertainty and nonlinearity in a cumulative distribution function. The CAA-based probabilistic range presentation describes, both fully and partially, specified process and environmental parameters. Thus, we are able to predict the probability bounds for leakage consumption with unknown dependences among variations. The end result is the chip-level parametric yield estimation based on leakage prediction. Experimental results demonstrate that the new approach provides a reliable bound estimation, which leads to a 20% yield improvement compared with only using the intervals of partially specified uncertainties.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 10 )