By Topic

Transforming Cyclic Circuits Into Acyclic Equivalents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Neiroukh, O. ; Intel Corp., Hillsboro, OR ; Edwards, S.A. ; Xiaoyu Song

Designers and high-level synthesis tools can introduce unwanted cycles in digital circuits, and for certain combinational functions, cyclic circuits that are stable and do not hold state are the smallest or most natural representations. Cyclic combinational circuits have well-defined functional behavior yet wreak havoc with most logic synthesis and timing tools, which require combinational logic to be acyclic. As such, some sort of cycle-removal step is necessary to handle these circuits with existing tools. We present a two-stage algorithm for transforming a combinational cyclic circuit into an equivalent acyclic circuit. The first part quickly and exactly characterizes all combinational behavior of a cyclic circuit. It starts by applying input patterns to each input and examining the boundary between gates whose outputs are and are not defined to find additional input patterns that make the circuit behave combinationally. It produces sets of assignments to inputs that together cover all combinational behavior. This can be used to report errors, as an optimization aid, or to restructure the circuit into an acyclic equivalent. The second stage of our algorithm does this restructuring by creating an acyclic circuit fragment from each of these assignments and assembles these fragments into an acyclic circuit that reproduces all the combinational behavior of the original cyclic circuit. Experiments show that our algorithm runs in seconds on real-life cyclic circuits, making it useful in practice.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 10 )