By Topic

Design Methods for Misaligned and Mispositioned Carbon-Nanotube Immune Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Carbon-nanotube (CNT) field-effect transistors (CNFETs) are promising extensions to silicon CMOS. Simulations show that CNFET inverters fabricated with a perfect CNFET technology have 13 times better energy delay product compared with 32-nm silicon CMOS inverters. The following two fundamental challenges prevent the fabrication of CNFET circuits with the aforementioned advantages: 1) misaligned and mispositioned CNTs and 2) metallic CNTs. Misaligned and mispositioned CNTs can cause incorrect functionality. This paper presents a technique for designing arbitrary logic functions using CNFET circuits that are guaranteed to implement correct functions even in the presence of a large number of misaligned and mispositioned CNTs. Experimental demonstration of misaligned and mispositioned CNT-immune logic structures is also presented.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:27 ,  Issue: 10 )