By Topic

Brain Network Analysis From High-Resolution EEG Recordings by the Application of Theoretical Graph Indexes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
F. De Vico Fallani ; IRCCS Fondazione Santa Lucia, Rome ; L. Astolfi ; F. Cincotti ; D. Mattia
more authors

The extraction of the salient characteristics from brain connectivity patterns is an open challenging topic since often the estimated cerebral networks have a relative large size and complex structure. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach would extract significant information from the functional brain networks estimated through different neuroimaging techniques. The present work intends to support the development of the ldquobrain network analysis:rdquo a mathematical tool consisting in a body of indexes based on the graph theory able to improve the comprehension of the complex interactions within the brain. In the present work, we applied for demonstrative purpose some graph indexes to the time-varying networks estimated from a set of high-resolution EEG data in a group of healthy subjects during the performance of a motor task. The comparison with a random benchmark allowed extracting the significant properties of the estimated networks in the representative Alpha (7-12 Hz) band. Altogether, our findings aim at proving how the brain network analysis could reveal important information about the time-frequency dynamics of the functional cortical networks.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:16 ,  Issue: 5 )