By Topic

Robust Control of an LUSM-Based X\hbox {--}Y\hbox {--}\theta Motion Control Stage Using an Adaptive Interval Type-2 Fuzzy Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Central Univ., Chungli ; Po-Huan Chou ; Po-Huang Shieh ; Syuan-Yi Chen

The robust control of a linear ultrasonic motor based X-Y-thetas motion control stage to track various contours is achieved by using an adaptive interval type-2 fuzzy neural network (AIT2FNN) control system in this study. In the proposed AIT2FNN control system, an IT2FNN, which combines the merits of an interval type-2 fuzzy logic system and a neural network, is developed to approximate an unknown dynamic function. Moreover, adaptive learning algorithms are derived using the Lyapunov stability theorem to train the parameters of the IT2FNN online. Furthermore, a robust compensator is proposed to confront the uncertainties including the approximation error, optimal parameter vectors, and higher order terms in Taylor series. To relax the requirement for the value of lumped uncertainty in the robust compensator, an adaptive lumped uncertainty estimation law is also investigated. In addition, the circle and butterfly contours are planned using a nonuniform rational B-spline curve interpolator. The experimental results show that the contour tracking performance of the proposed AIT2FNN is significantly improved compared with the adaptive type-1 FNN. Additionally, the robustness to parameter variations, external disturbances, cross-coupled interference, and frictional force can also be obtained using the proposed AIT2FNN.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:17 ,  Issue: 1 )