By Topic

Duhem modeling of friction-induced hysteresis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Padthe, A. ; Univ. of Michigan, Ann Arbor, MI ; Drincic, B. ; Jinhyoung Oh ; Rizos, D.
more authors

In this article we recast the Dahl, LuGre, and Maxwell-slip models as extended, generalized, or semilinear Duhem models. We classified each model as either rate independent or rate dependent. Smoothness properties of the three friction models were also considered. We then studied the hysteresis induced by friction in a single-degree-of-freedom system. The resulting system was modeled as a linear system with Duhem feedback. For each friction model, we computed the corresponding hysteresis map. Next, we developed a DC servo motor testbed and performed motion experiments. We then modeled the testbed dynamics and simulated the system using all three friction models. By comparing the simulated and experimental results, it was found that the LuGre model provides the best model of the gearbox friction characteristics. A manual tuning approach was used to determine parameters that model the friction in the DC motor.

Published in:

Control Systems, IEEE  (Volume:28 ,  Issue: 5 )