By Topic

A Survey of Uncertain Data Algorithms and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aggarwal, C.C. ; IBM T. J. Watson Res. Center, Hawthorne, NY ; Yu, P.S.

In recent years, a number of indirect data collection methodologies have lead to the proliferation of uncertain data. Such data points are often represented in the form of a probabilistic function, since the corresponding deterministic value is not known. This increases the challenge of mining and managing uncertain data, since the precise behavior of the underlying data is no longer known. In this paper, we provide a survey of uncertain data mining and management applications. In the field of uncertain data management, we will examine traditional methods such as join processing, query processing, selectivity estimation, OLAP queries, and indexing. In the field of uncertain data mining, we will examine traditional mining problems such as classification and clustering. We will also examine a general transform based technique for mining uncertain data. We discuss the models for uncertain data, and how they can be leveraged in a variety of applications. We discuss different methodologies to process and mine uncertain data in a variety of forms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 5 )