Cart (Loading....) | Create Account
Close category search window
 

Hierarchically Distributed Peer-to-Peer Document Clustering and Cluster Summarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hammouda, K.M. ; Desire2Learn Inc., Kitchener, ON ; Kamel, M.S.

In distributed data mining, adopting a flat node distribution model can affect scalability. To address the problem of modularity, flexibility and scalability, we propose a Hierarchically-distributed Peer-to-Peer (HP2PC) architecture and clustering algorithm. The architecture is based on a multi-layer overlay network of peer neighborhoods. Supernodes, which act as representatives of neighborhoods, are recursively grouped to form higher level neighborhoods. Within a certain level of the hierarchy, peers cooperate within their respective neighborhoods to perform P2P clustering. Using this model, we can partition the clustering problem in a modular way across neighborhoods, solve each part individually using a distributed K-means variant, then successively combine clusterings up the hierarchy where increasingly more global solutions are computed. In addition, for document clustering applications, we summarize the distributed document clusters using a distributed keyphrase extraction algorithm, thus providing interpretation of the clusters. Results show decent speedup, reaching 165 times faster than centralized clustering for a 250-node simulated network, with comparable clustering quality to the centralized approach. We also provide comparison to the P2P K-means algorithm and show that HP2PC accuracy is better for typical hierarchy heights. Results for distributed cluster summarization match those of their centralized counterparts with up to 88% accuracy.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 5 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.