By Topic

Generalized Elastic Scheduling for Real-Time Tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thidapat Chantem ; University of Notre Dame, Notre Dame ; Xiaobo Sharon Hu ; Michael D. Lemmon

The elastic task model is a powerful model for adapting periodic real-time systems in the presence of uncertainty. This work generalizes the existing elastic scheduling approach in several directions. First, it presents a general framework, which formulates a trade-off between task schedulability and a specific performance metric as an optimization problem. Such a framework allows real-time systems under overloads to graciously adapt by adjusting their performance level. Second, it is shown in this work that the well-known task compression algorithm in fact solves a quadratic programming problem that seeks to minimize the sum of the squared deviation of a task's utilization from initial desired utilization. This finding indicates that the task compression algorithm may be applied to efficiently solve other similar types of problems that often arise in real-time applications. In particular, an iterative approach is proposed to solve the period selection problem for real-time tasks with deadlines less than respective periods. Further, the framework is adapted to solve the deadline selection problem, which is useful in some control systems with fixed periods.

Published in:

IEEE Transactions on Computers  (Volume:58 ,  Issue: 4 )