Cart (Loading....) | Create Account
Close category search window
 

SARNA-Predict: Accuracy Improvement of RNA Secondary Structure Prediction Using Permutation-Based Simulated Annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsang, H.H. ; Sch. of Comput. Sci., Simon Fraser Univ., Surrey, BC, Canada ; Wiese, K.C.

Ribonucleic acid (RNA), a single-stranded linear molecule, is essential to all biological systems. Different regions of the same RNA strand will fold together via base pair interactions to make intricate secondary and tertiary structures that guide crucial homeostatic processes in living organisms. Since the structure of RNA molecules is the key to their function, algorithms for the prediction of RNA structure are of great value. In this article, we demonstrate the usefulness of SARNA-Predict, an RNA secondary structure prediction algorithm based on Simulated Annealing (SA). A performance evaluation of SARNA-Predict in terms of prediction accuracy is made via comparison with eight state-of-the-art RNA prediction algorithms: mfold, Pseudoknot(pknotsRE), NUPACK, pknotsRG-mfe, Sfold, HotKnots, ILM, and STAR. These algorithms are from three different classes: heuristic, dynamic programming, and statistical sampling techniques. An evaluation for the performance of SARNA-Predict in terms of prediction accuracy was verified with native structures. Experiments on 33 individual known structures from eleven RNA classes (tRNA, viral RNA, antigenomic HDV, telomerase RNA, tmRNA, rRNA, RNaseP, 5S rRNA, Group I intron 23S rRNA, Group I intron 16S rRNA, and 16S rRNA) were performed. The results presented in this paper demonstrate that SARNA-Predict can out-perform other state-of-the-art algorithms in terms of prediction accuracy. Furthermore, there is substantial improvement of prediction accuracy by incorporating a more sophisticated thermodynamic model (efn2).

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 4 )

Date of Publication:

Oct.-Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.