By Topic

Lateral RF image synthesis using a synthetic aperture imaging technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
HervĂ© Liebgott ; CREATIS, Université de Lyon, INSA de Lyon, Université Lyon 1, CNRS, UMR5220, INSERM, U630, F-69621, France (e-mail: ; Adrian Basarab ; Pierre Gueth ; Christian Cachard
more authors

The oscillating profile naturally present in ultrasound images has been shown to be extremely valuable in different applications, particularly in motion estimation. Recent studies have shown that it is possible to produce images with transverse oscillations (TOs) based on a specific type of beamforming. However, there is still a great difference between the nature of the lateral oscillations produced with current methods and the axial profile of ultrasound images. In this study, we propose to combine synthetic aperture imaging (synthetic transmit aperture, STA) using a specific beamformer in both transmit mode and receive mode combined with a heterodyning demodulation method to produce lateral radiofrequency signals (LRFs). The aim was to produce lateral signals as close as possible to conventional axial signals, which would make it possible to estimate lateral displacements with the same accuracy as in the axial direction. The feasibility of this approach was validated in simulation and experimentally on an ultrasound research platform, the Ultrasonix RP system. We show that the combination of STA and the heterodyning demodulation can divide the wavelength of the LRF signals by 4 and divide the width of the lateral envelope of the point spread function (PSF) by 2 compared with the previous approaches using beamforming in receive mode only. Finally, we also illustrate the potential of our beamforming for motion estimation compared with previous TO methods.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:55 ,  Issue: 9 )