Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Simulation of piezoelectric excitation of guided waves using waveguide finite elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Loveday, P. ; Sensor Sci. & Technol., CSIR Mater. Sci. & Manuf., Tshwane

A numerical method for computing the time response of infinite constant cross-section elastic waveguides excited by piezoelectric transducers was developed. The method combined waveguide finite elements (semi-analytical finite elements) for modeling the waveguide with conventional 3-D piezoelectric finite elements for modeling the transducer. The frequency response of the coupled system was computed and then used to simulate the time response to tone-burst electrical excitation. A technique for identifying and separating the propagating modes was devised, which enabled the computation of the response of a selected reduced number of modes. The method was applied to a rail excited by a piezoelectric patch transducer, and excellent agreement with measured responses was obtained. It was found that it is necessary to include damping in the waveguide model if the response near a ldquocut-onrdquo frequency is to be simulated in the near-field.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 9 )