By Topic

Artificial Data Sets Based on Knowledge Generators: Analysis of Learning Algorithms Efficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rios-Boutin, J. ; Grup de Recerca en Sistemes Intelligents, Univ. Ramon Llull, Barcelona ; Orriols-Puig, A. ; Garrell-Guiu, J.-M.

This paper proposes a methodology to generate artificial data sets to evaluate the behavior of machine learning techniques. The methodology relies in the definition of a domain and the generation of data sets from this domain by means of different sampling processes. Then, learners are trained with the generated data sets and the created models are compared with the original domain to evaluate the quality of the learners. In the present work, a particular implementation of this methodology is provided, which is defined to test learning techniques that use a binary rule knowledge representation. As a case study, the behavior of XCS, the most influential learning classifier system, is analyzed following the methodology.

Published in:

Hybrid Intelligent Systems, 2008. HIS '08. Eighth International Conference on

Date of Conference:

10-12 Sept. 2008