Cart (Loading....) | Create Account
Close category search window

Empirical Study of Feature Selection Methods in Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arauzo-Azofra, A. ; Area of Project Eng., Univ. of Cordoba, Cordoba ; Benitez, J.M.

The use of feature selection can improve accuracy, efficiency, applicability and understandability of a learning process and the resulting learner. For this reason, many methods of automatic feature selection have been developed. By using the modularization of feature selection process, this paper evaluates a wide spectrum of these methods and some additional ones created by combination of different search and measure modules. The evaluation identifies the most interesting methods and shows some recommendations about which feature selection method should be used under different conditions.

Published in:

Hybrid Intelligent Systems, 2008. HIS '08. Eighth International Conference on

Date of Conference:

10-12 Sept. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.