By Topic

Optimal Power Scheduling for Correlated Data Fusion in Wireless Sensor Networks via Constrained PSO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wimalajeewa, T. ; Dept. of Electr. & Comput. Eng., Univ. of New Mexico, Albuquerque, NM ; Jayaweera, S.K.

Optimal power scheduling for distributed detection in a Gaussian sensor network is addressed for both independent and correlated observations. We assume amplify-and-forward local processing at each node. The wireless link between sensors and the fusion center is assumed to undergo fading and coefficients are assumed to be available at the transmitting sensors. The objective is to minimize the total network power to achieve a desired fusion error probability at the fusion center. For i.i.d. observations, the optimal power allocation is derived analytically in closed form. When observations are correlated, first, an easy to optimize upper bound is derived for sufficiently small correlations and the power allocation scheme is derived accordingly. Next, an evolutionary computation technique based on particle swarm optimization is developed to find the optimal power allocation for arbitrary correlations. The optimal power scheduling scheme suggests that the sensors with poor observation quality and bad channels should be inactive to save the total power expenditure of the system. It is shown that the probability of fusion error performance based on the optimal power allocation scheme outperforms the uniform power allocation scheme especially when either the number of sensors is large or the local observation quality is good.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 9 )