By Topic

Nonparametric Identification of Anisotropic (Elliptic) Correlations in Spatially Distributed Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arsenia Chorti ; Dept. of Electr. & Electron. Eng., Univ. Coll. London, London ; Dionissios T. Hristopulos

Random fields are useful models of spatially variable quantities, such as those occurring in environmental processes and medical imaging. The fluctuations obtained in most natural data sets are typically anisotropic. The parameters of anisotropy are often determined from the data by means of empirical methods or the computationally expensive method of maximum likelihood. In this paper, we propose a systematic method for the identification of geometric (elliptic) anisotropy parameters of scalar fields. The proposed method is computationally efficient, nonparametric, noniterative, and it applies to differentiable random fields with normal or lognormal probability density functions. Our approach uses sample-based estimates of the random field spatial derivatives that we relate through closed form expressions to the anisotropy parameters. This paper focuses on two spatial dimensions. We investigate the performance of the method on synthetic samples with Gaussian and Matern correlations, both on regular and irregular lattices. The systematic anisotropy detection provides an important preprocessing stage of the data. Knowledge of the anisotropy parameters, followed by suitable rotation and rescaling transformations restores isotropy thus allowing classical interpolation and signal processing methods to be applied.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 10 )