Cart (Loading....) | Create Account
Close category search window

Full-Diversity Codes for MISO Systems Equipped With Linear or ML Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, J. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON ; Jian-Kang Zhang ; Kon Max Wong

In this paper, a general criterion for space-time block codes (STBC) to achieve full diversity with a linear receiver is proposed for a wireless communication system having multiple transmitter and single receiver antennas [multiple-input-single-output (MISO)]. Particularly, the STBC with Toeplitz structure satisfies this criterion, and therefore, enables full diversity. Further examination of this Toeplitz STBC reveals the following important properties: (1) the symbol transmission rate can be made to approach unity; (2) applying the Toeplitz code to any signalling scheme having nonzero distance between the nearest constellation points results in a nonvanishing determinant. In addition, if quadratic-amplitude modulation (QAM) is used as the signalling scheme, then for independent MISO flat-fading channels, the Toeplitz codes is proved to approach the optimal diversity-versus-multiplexing tradeoff with a zero-forcing (ZF) receiver when the number of channel uses is large. This is, so far, the first nonorthogonal STBC shown to achieve the optimal tradeoff for such a receiver. On the other hand, when maximum-likelihood (ML) detection is employed in a MISO system, the Toeplitz STBC achieves the maximum coding gain for independent channels. When the channel fading coefficients are correlated, the inherent transmission matrix in the Toeplitz STBC can be designed to minimize the average worst case pairwise error probability.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 10 )

Date of Publication:

Oct. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.