By Topic

List Decoding of Biorthogonal Codes and the Hadamard Transform With Linear Complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dumer, I. ; Dept. of Electr. Eng., Univ. of California, Riverside, CA ; Kabatiansky, G. ; Tavernier, C.

Let a biorthogonal Reed-Muller code RM (1,m) of length n = 2m be used on a memoryless channel with an input alphabet plusmn1 and a real-valued output R. Given any nonzero received vector y in the Euclidean space Rn and some parameter epsiisin(0,1), our goal is to perform list decoding of the code RM (1, m) and retrieve all codewords located within the angle arccos e from y. For an arbitrarily small epsi, we design an algorithm that outputs this list of codewords with the linear complexity order of n [ln2 isin] bit operations. Without loss of generality, let vector y be also scaled to the Euclidean length radic(n) of the transmitted vectors. Then an equivalent task is to retrieve all coefficients of the Hadamard transform of vector y whose absolute values exceed nisin. Thus, this decoding algorithm retrieves all ne-significant coefficients of the Hadamard transform with the linear complexity n [ln2 isin] instead of the complexity n In2n of the full Hadamard transform.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 10 )