Cart (Loading....) | Create Account
Close category search window
 

A 0.9-V Input Discontinuous-Conduction-Mode Boost Converter With CMOS-Control Rectifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Man, T.Y. ; Marvell Hong Kong Ltd., Hong Kong ; Mok, P. ; Chan, M.J.

A 0.9-V input discontinuous-conduction-mode (DCM) boost converter delivering 2.5-V and 100-mA output is presented. A novel low-voltage pulse-width modulator is proposed. The modulator can be directly powered from the 0.9-V input instead of using the 2.5-V output as in general modulator designs. Sophisticated low-voltage analog blocks, which normally consume a large amount of power and chip area, are not required in the modulator. The impact of output-voltage ripple and transient-induced output-voltage perturbation on the operation of analog blocks inside the modulator is eliminated. Boost converter start-up sequence is also greatly simplified. A CMOS-control rectifier (CCR) is also proposed to improve converter power efficiency. The CCR is used to replace the conventional rectifying switch to provide adaptive dead-time, which helps to minimize charge-sharing loss and body-diode conduction loss. Corresponding thermal stress on the rectifying switch is hence minimized. The CCR also enables the use of small off-chip inductor and capacitor at sub-MHz switching frequency to improve light-load efficiency. This converter has been implemented in a 0.35- mum CMOS process. It is designed to operate at ~ 667 kHz with a 1 mu H inductor and 4.7 mu F output capacitor to reduce both switching loss and form factor. Experimental results prove that the converter can be directly powered from 0.9-V input with ~ 85% efficiency at 100-mA output.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:43 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.