By Topic

Fuzzy Techniques for Subjective Workload-Score Modeling Under Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mohit Kumar ; Center for Life Sci. Autom., Rostock ; Dagmar Arndt ; Steffi Kreuzfeld ; Kerstin Thurow
more authors

This paper deals with the development of a computer model to estimate the subjective workload score of individuals by evaluating their heart-rate (HR) signals. The identification of a model to estimate the subjective workload score of individuals under different workload situations is too ambitious a task because different individuals (due to different body conditions, emotional states, age, gender, etc.) show different physiological responses (assessed by evaluating the HR signal) under different workload situations. This is equivalent to saying that the mathematical mappings between physiological parameters and the workload score are uncertain. Our approach to deal with the uncertainties in a workload-modeling problem consists of the following steps: 1) The uncertainties arising due the individual variations in identifying a common model valid for all the individuals are filtered out using a fuzzy filter; 2) stochastic modeling of the uncertainties (provided by the fuzzy filter) use finite-mixture models and utilize this information regarding uncertainties for identifying the structure and initial parameters of a workload model; and 3) finally, the workload model parameters for an individual are identified in an online scenario using machine learning algorithms. The contribution of this paper is to propose, with a mathematical analysis, a fuzzy-based modeling technique that first filters out the uncertainties from the modeling problem, analyzes the uncertainties statistically using finite-mixture modeling, and, finally, utilizes the information about uncertainties for adapting the workload model to an individual's physiological conditions. The approach of this paper, demonstrated with the real-world medical data of 11 subjects, provides a fuzzy-based tool useful for modeling in the presence of uncertainties.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:38 ,  Issue: 6 )