By Topic

A Hammerstein Recurrent Neurofuzzy Network With an Online Minimal Realization Learning Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jeen-Shing Wang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan ; Yen-Ping Chen

This paper presents a Hammerstein recurrent neurofuzzy network associated with an online minimal realization learning algorithm for dealing with nonlinear dynamic applications. We fuse the concept of states in linear systems into a neurofuzzy framework so that the whole structure can be expressed by a state-space representation. An online minimal realization learning algorithm has been developed to find a controllable and observable state-space model of minimal size from the input-output measurements of a given system. Such an idea can simultaneously resolve the problem of the determination of a minimal structure and the difficulty of network stability analysis. The advantages of our approach include: 1) our recurrent network is capable of translating the complicated dynamic behavior of a nonlinear system into a minimal set of linguistic fuzzy dynamical rules and into state-space representation as well and 2) an online minimal realization learning algorithm unifies an order determination algorithm, a hybrid parameter initialization method, and a recursive recurrent learning algorithm into a systematic procedure to identify a minimal structure with satisfactory performance. Performance evaluations on benchmark examples as well as real-world applications have successfully validated the effectiveness of our approach.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:16 ,  Issue: 6 )