By Topic

Pull-In Analysis of Torsional Scanners Actuated by Electrostatic Vertical Combdrives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daesung Lee ; Devices & Mater. Lab., LG Electron. Inst. of Technol., Seoul ; Olav Solgaard

This paper presents pull-in analysis of torsional MEMS scanners actuated by electrostatic vertical combdrives with general comb gap arrangements and cross sections. The analysis is based on a 2-DOF actuator with a single voltage control. Three failure modes of the scanners are identified as in-plane twist, transversal motion, and out-of-plane twist. For each failure mode, analytical expressions of pull-in deflection are obtained by applying 2D analytical capacitance models to the derived pull-in equations. From these, the dominant pull-in mechanism is shown to be in-plane twist for scanners with high-aspect-ratio torsional springs. The analytical calculations for both symmetric and asymmetric capacitances are shown to be in good agreement with simulation results. The optimum scanner design is achieved when the pull-in deflection matches the capacitance maximum angle. The condition can be expressed in terms of the ratio of the comb thickness to the comb gap, which is smaller than the typical aspect ratio of deep reactive ion etching. The optimum tradeoff between the maximum deflection angle and the number of movable combs is achieved by adjusting the overlap of the movable and fixed combs and the distance of the comb sets from the axis of the rotation.

Published in:

Journal of Microelectromechanical Systems  (Volume:17 ,  Issue: 5 )