Cart (Loading....) | Create Account
Close category search window
 

Resource Allocation for Distributed Streaming Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qian Zhu ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH ; Agrawal, G.

We consider resource allocation for distributed streaming applications running in a grid environment, where continuously streaming data needs to be aggregated and processed to produce output streams. Because such an application comprises a pipeline of processing stages, both communication and computational requirements need to be taken into account while performing resource allocation. In this paper, we give a rigorous formulation of this resource allocation problem, based on the DAG representation of the application as well as the environment. We have shown how we can use the notion of subgraph isomorphism and developed an effective resource allocation algorithm. The main observations from the experiments we conducted to evaluate our algorithms were as follows: the overhead caused by our algorithm is comparable to an existing algorithm, Streamline, which is based onheuristics. At the same time, the application performance was improved by 30% on average. When compared to the allocation performed by the optimal algorithm, which enumerates all mappings, the application performance with our algorithm was within 4%. At the same time, unlike the optimal algorithm, our algorithm scaled well to large graphs.

Published in:

Parallel Processing, 2008. ICPP '08. 37th International Conference on

Date of Conference:

9-12 Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.