By Topic

Realistic Models and Efficient Algorithms for Fault Tolerant Scheduling on Heterogeneous Platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Benoit, A. ; LIP Lab., Univ. de Lyon, Lyon ; Hakem, M. ; Robert, Y.

Most list scheduling heuristics rely on a simple platform model where communication contention is not taken into account. In addition, it is generally assumed that processors in the systems are completely safe. To schedule precedence graphs in a more realistic framework, we introduce an efficient fault tolerant scheduling algorithm that is both contention-aware and capable of supporting epsiv arbitrary fail-silent/fail-stop processor failures. We focus on a bi- criteria approach, where we aim at minimizing the total execution time, or latency, given a fixed number of failures supported in the system. Our algorithm has a low time complexity, and drastically reduces the number of additional communications induced by the replication mechanism. Experimental results fully demonstrate the usefulness of the proposed algorithm, which leads to efficient execution schemes while guaranteeing a prescribed level of fault tolerance.

Published in:

Parallel Processing, 2008. ICPP '08. 37th International Conference on

Date of Conference:

9-12 Sept. 2008