By Topic

A Hybrid Evolutionary Algorithm Based on ACO and PSO for Real Estate Early Warning System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianzhou Wang ; Sch. of Math. & Stat., Lanzhou Univ., Lanzhou ; Jinzhao Liang ; Jinxing Che ; Donghuai Sun

Recently some cities' investments on fix assets increase too fast that lead to a property bubble. In order to prevent the overheating of real estate investment, this paper presents a pre-warning system developed to monitor and provide pre-warning to the governmental decision makers in real estate market. In the overall structure plan, the warning classification system is the most important so that we make an innovation to it using the novel ACO-PSO-hybrid algorithm. The hybrid algorithm makes use of advantages of both ACO and PSO methods therefore it is of benefit in solving clustering problems. And the experiment results demonstrate that our algorithm is significantly better than K-means methods in terms of quality. It is adaptive, robust and efficient, achieving high autonomy, simplicity and efficiency. Therefore it can effectively provide early warning corresponding to reality so that the pre-warning system can provide useful information to regulate the property market.

Published in:

Computer Science and Information Technology, 2008. ICCSIT '08. International Conference on

Date of Conference:

Aug. 29 2008-Sept. 2 2008