By Topic

All-Optical Chromatic Dispersion Monitoring for Phase-Modulated Signals Utilizing Cross-Phase Modulation in a Highly Nonlinear Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yang, J.-Y. ; Dept. of Electr. Eng., Southern California Univ., Los Angeles, CA ; Zhang, L. ; Wu, X. ; Yilmaz, O.F.
more authors

We propose and experimentally demonstrate an all-optical chromatic dispersion (CD) monitoring technique for phase-modulated signals utilizing the cross-phase-modulation effect between the input signal and the inserted continuous-wave probe. The probe's optical spectrum changes with the accumulated CD on the input signal, indicating that the optical power variations can be measured for monitoring. The experimental results show that this technique can monitor up to 120 ps/nm of CD for a 40-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) transmission system, with the maximum measured optical power increment of 16.5 dB. The applicability of this monitoring technique to higher bit-rate phase-modulated signals, such as 80-Gb/s RZ differential quadrature phase-shift keying and 80-Gb/s polarization-multiplexed RZ-DPSK, is also investigated via simulation.

Published in:

Photonics Technology Letters, IEEE  (Volume:20 ,  Issue: 19 )