By Topic

Series compliance for an efficient running gait

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jonathan W. Hurst ; School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR ; Alfred A. Rizzi

The important message to take from this article is that a robot is a unified dynamic system comprising electronics, software, and mechanical components, and for certain tasks such as running, a significant portion of the behavior is best exhibited through natural dynamics of the mechanism. Therefore, the mechanical system must be specialized for the task and designed with the same care for dynamic control as the software control system. In constructing the ECD leg, we have attempted to follow this philosophy and design the mechanical system for the specific tasks of walking and running. The prototype actuator, with dynamics verified by testing, exhibited behavior that enabled running in simulation. The ECD leg builds on design revisions from the BiMASC prototype, and the successful experiments with Thumper hopping around the laboratory have proven the ideas and engineering behind the design. Prof. Grizzle's group at the University of Michigan has already demonstrated tentative walking with MABEL, and we expect to demonstrate robust and efficient walking and running gaits in the near future.

Published in:

IEEE Robotics & Automation Magazine  (Volume:15 ,  Issue: 3 )