By Topic

A Bipedal Locomotion Planning Based on Virtual Linear Inverted Pendulum Mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, a bipedal locomotion planning based on virtual linear inverted pendulum mode (VLIPM) is proposed. In conventional methods, the desired center of gravity (COG) position and velocity are achieved by modifying the foot placement. In this research, the desired COG position and velocity are achieved while the desired foot placement is also realized. In the proposed method, the virtual modified foot placement and trajectory planning are calculated separately. VLIPM is applied to the calculation of the virtual modified foot placement. By using virtual supporting point (VSP), the difference between the virtual modified and desired foot placements is compensated. In the result, the desired foot placement is achieved as if the foot placement is in the virtual modified foot placement. Trajectory planning is applied to LIPM with VSP and 5-D polynomial. The boundary conditions of the polynomial are set to the desired COG position and velocity. In the result, the desired COG position and velocity are also obtained. Differences of the motion by different models are compensated by matching the boundary conditions of different models. By applying different models in the calculations of the foot placement and trajectory planning, the desired robot motion is realized. The walking stability of the proposed method is equivalent to that of the conventional method. The effectiveness of the proposed method is confirmed by a simulation and an experiment.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 1 )