By Topic

N-Face Metal–Insulator–Semiconductor High-Electron-Mobility Transistors With AlN Back-Barrier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Hoi Wong, Man ; Dept. of Electr. & Comput. Eng., Univ. of California, Santa Barbara, CA ; Yi Pei ; Rongming Chu ; Rajan, Siddharth
more authors

We present a high-performance SiN/AlGaN (cap)/GaN (channel)/AlN (barrier)/GaN (buffer) metal-insulator-semiconductor high-electron-mobility transistor grown on the N-face, in which the 2-D electron gas (2DEG) is induced at the top GaN/AlN interface. The use of AlN eliminates alloy disorder scattering to the 2DEG and provides strong back-barrier confinement of the 2DEG under high electric fields for device scaling. Devices with 0.7-mum gate length showed a current-gain cutoff frequency (fT) of 17 GHz and a power-gain cutoff frequency (f max) of 37 GHz. A continuous-wave output power density of 7.1 W/mm was measured at 4 GHz, with 58% power-added efficiency and a large-signal gain of 15.3 dB at a drain bias of 35 V.

Published in:

Electron Device Letters, IEEE  (Volume:29 ,  Issue: 10 )