Cart (Loading....) | Create Account
Close category search window
 

Improved Electrical Properties of Ge p-MOSFET With  \hbox {HfO}_{2} Gate Dielectric by Using \hbox {TaO}_{x} \hbox {N}_{y} Interlayer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xu, J.P. ; Dept. of Electron. Sci. & Technol., Huazhong Univ. of Sci. & Technol., Wuhan ; Zhang, X.F. ; Li, C.X. ; Lai, P.T.
more authors

The electrical characteristics of germanium p-metal-oxide-semiconductor (p-MOS) capacitor and p-MOS field-effect transistor (FET) with a stack gate dielectric of HfO2/TaOxNy are investigated. Experimental results show that MOS devices exhibit much lower gate leakage current than MOS devices with only HfO2 as gate dielectric, good interface properties, good transistor characteristics, and about 1.7-fold hole-mobility enhancement as compared with conventional Si p-MOSFETs. These demonstrate that forming an ultrathin passivation layer of TaOxNy on germanium surface prior to deposition of high-k dielectrics can effectively suppress the growth of unstable GeOx, thus reducing interface states and increasing carrier mobility in the inversion channel of Ge-based transistors.

Published in:

Electron Device Letters, IEEE  (Volume:29 ,  Issue: 10 )

Date of Publication:

Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.