By Topic

A branch-and-bound technique for nano-structure image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gat, Y. ; Intel research

Images of nano-structures are often noisy. On the other hand, in many settings there is quite a lot of model knowledge regarding the observed structures. This paper proposes a method for segmenting an image using a geometric model of the the observed structure. The resulting segmentation is guaranteed to be globally optimal, for an explicitly specified score function. This property provides a great deal of robustness to the algorithm. The algorithm presented explores a pre-defined space of segmentations using a branch-and-bound algorithm. It eliminates those parts of the space that are provably poor and explores in further detail the more promising parts of the space. An example of a segmentation that can be obtained in this way is a straight line segmentation of an image into 2 regions that minimizes the intensity variation within the regions. Results showing extraction of specific nano-structures are presented. A trivial variation on the algorithm can find a maximum a-posteriori probability estimate of the segmentation when there exists an a-priori distribution over the segmentations and the objective function is interpreted as the likelihood of the image given the segmentation.

Published in:

Computer Vision and Pattern Recognition Workshop, 2003. CVPRW '03. Conference on  (Volume:2 )

Date of Conference:

16-22 June 2003