Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Bayes Vector Quantizer for Class-Imbalance Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Diamantini, Claudia ; Dipt. di Ing. Inf., Gestionale e dell''Autom., Universitd Politec. delle Marche, Ancona ; Potena, Domenico

The class-imbalance problem is the problem of learning a classification rule from data that are skewed in favor of one class. On these datasets traditional learning techniques tend to overlook the less numerous class, at the advantage of the majority class. However, the minority class is often the most interesting one for the task at hand. For this reason, the class-imbalance problem has received increasing attention in the last few years. In the present paper we point the attention of the reader to a learning algorithm for the minimization of the average misclassification risk. In contrast to some popular class-imbalance learning methods, this method has its roots in statistical decision theory. A particular interesting characteristic is that when class distributions are unknown, the method can work by resorting to stochastic gradient algorithm. We study the behavior of this algorithm on imbalanced datasets, demonstrating that this principled approach allows to obtain better classification performances compared to the principal methods proposed in the literature.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 5 )