By Topic

DIA: A Complexity-Effective Decoding Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Santana, O.J. ; Edificio de Informdtica y Matemdticas, Univ. de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria ; Falcon, A. ; Ramirez, A. ; Valero, M.

Fast instruction decoding is a true challenge for the design of CISC microprocessors implementing variable-length instructions. A well-known solution to overcome this problem is caching decoded instructions in a hardware buffer. Fetching already decoded instructions avoids the need for decoding them again, improving processor performance. However, introducing such special--purpose storage in the processor design involves an important increase in the fetch architecture complexity. In this paper, we propose a novel decoding architecture that reduces the fetch engine implementation cost. Instead of using a special-purpose hardware buffer, our proposal stores frequently decoded instructions in the memory hierarchy. The address where the decoded instructions are stored is kept in the branch prediction mechanism, enabling it to guide our decoding architecture. This makes it possible for the processor front end to fetch already decoded instructions from the memory instead of the original nondecoded instructions. Our results show that using our decoding architecture, a state-of-the-art superscalar processor achieves competitive performance improvements, while requiring less chip area and energy consumption in the fetch architecture than a hardware code caching mechanism.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 4 )