By Topic

Bimodal packet distribution in loss systems using maximum Tsallis entropy principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sharma, S. ; IBM Res. Lab., New Delhi ; Karmeshu

A theoretical model of loss system is proposed and analysed within the framework of maximum Tsallis entropy principle. The study provides an explicit expression for state probability distribution of packets in presence of long-range dependent traffic. The unimodal state probability distribution corresponding to well-known Erlang's loss formula is recovered for Tsallis entropy parameter q = 1. As the parameter q is lowered from unity, it is shown that the state probability distribution makes a transition from unimodal to bimodal. The emergence of bimodality can be regarded as a consequence of long-range dependence. The implication of the model in the design of loss systems is discussed.

Published in:

Communications, IEEE Transactions on  (Volume:56 ,  Issue: 9 )