Cart (Loading....) | Create Account
Close category search window
 

Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis and comparisons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Feifei Gao ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Tao Cui ; Nallanathan, A. ; Tellambura, C.

Recently, the advantages of the discrete cosine transform (DCT) based orthogonal frequency-division multiplexing (OFDM) have come to the light. We thus consider DCT- OFDM with non-circular transmission (our results cover circular transmission as well) and present two blind joint maximum- likelihood frequency offset and phase offset estimators. Both our theoretical analysis and numerical comparisons reveal new advantages of DCT-OFDM over the traditional discrete Fourier transform (DFT) based OFDM. These advantages, as well as those already uncovered in the early works on DCT-OFDM, support the belief that DCT-OFDM is a promising multi-carrier modulation scheme.

Published in:

Communications, IEEE Transactions on  (Volume:56 ,  Issue: 9 )

Date of Publication:

September 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.