By Topic

Minimization of Region-Scalable Fitting Energy for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chunming Li ; Inst. of Imaging Sci., Vanderbilt Univ., Nashville, TN ; Chiu-Yen Kao ; Gore, J.C. ; Zhaohua Ding

Intensity inhomogeneities often occur in real-world images and may cause considerable difficulties in image segmentation. In order to overcome the difficulties caused by intensity inhomogeneities, we propose a region-based active contour model that draws upon intensity information in local regions at a controllable scale. A data fitting energy is defined in terms of a contour and two fitting functions that locally approximate the image intensities on the two sides of the contour. This energy is then incorporated into a variational level set formulation with a level set regularization term, from which a curve evolution equation is derived for energy minimization. Due to a kernel function in the data fitting term, intensity information in local regions is extracted to guide the motion of the contour, which thereby enables our model to cope with intensity inhomogeneity. In addition, the regularity of the level set function is intrinsically preserved by the level set regularization term to ensure accurate computation and avoids expensive reinitialization of the evolving level set function. Experimental results for synthetic and real images show desirable performances of our method.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 10 )