By Topic

CTex—An Adaptive Unsupervised Segmentation Algorithm Based on Color-Texture Coherence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dana E. Ilea ; Sch. of Electron. Eng., Dublin City Univ., Dublin ; Paul F. Whelan

This paper presents the development of an unsupervised image segmentation framework (referred to as CTex) that is based on the adaptive inclusion of color and texture in the process of data partition. An important contribution of this work consists of a new formulation for the extraction of color features that evaluates the input image in a multispace color representation. To achieve this, we have used the opponent characteristics of the RGB and YIQ color spaces where the key component was the inclusion of the self organizing map (SOM) network in the computation of the dominant colors and estimation of the optimal number of clusters in the image. The texture features are computed using a multichannel texture decomposition scheme based on Gabor filtering. The major contribution of this work resides in the adaptive integration of the color and texture features in a compound mathematical descriptor with the aim of identifying the homogenous regions in the image. This integration is performed by a novel adaptive clustering algorithm that enforces the spatial continuity during the data assignment process. A comprehensive qualitative and quantitative performance evaluation has been carried out and the experimental results indicate that the proposed technique is accurate in capturing the color and texture characteristics when applied to complex natural images.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 10 )