By Topic

Two Blocking Algorithms on Adaptive Binary Splitting: Single and Pair Resolutions for RFID Tag Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuan-Cheng Lai ; Dept. of Inf. Manage., Nat. Taiwan Univ. of Sci. & Technol., Taipei ; Chih-Chung Lin

In radio frequency identification (RFID) systems, the reader identifies tags through communication over a shared wireless channel. When multiple tags transmit their IDs simultaneously, their signals collide, increasing the identification delay. Therefore, many previous anti-collision algorithms, including an adaptive query splitting algorithm (AQS) and an adaptive binary splitting algorithm (ABS), focused on solving this problem. This paper proposes two blocking algorithms, a single resolution blocking ABS algorithm (SRB) and a pair resolution blocking ABS algorithm (PRB), based on ABS. SRB not only inherits the essence of ABS which uses the information of recognized tags obtained from the last process of tag identification, but also adopts a blocking technique which prevents recognized tags from being collided by unrecognized tags. PRB further adopts a pair resolution technique which couples recognized tags and thus only needs half time for next identifying these recognized tags. We formally analyze the performance of SRB and PRB. Finally, the analytic and simulation results show that SRB slightly outperforms ABS and PRB significantly surpasses ABS.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:17 ,  Issue: 3 )