By Topic

Spatio-Temporal Network Anomaly Detection by Assessing Deviations of Empirical Measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paschalidis, I.C. ; Dept. of Electr. & Comput. Eng., Boston Univ., Brookline, MA ; Smaragdakis, G.

We introduce an Internet traffic anomaly detection mechanism based on large deviations results for empirical measures. Using past traffic traces we characterize network traffic during various time-of-day intervals, assuming that it is anomaly-free. We present two different approaches to characterize traffic: (i) a model-free approach based on the method of types and Sanov's theorem, and (ii) a model-based approach modeling traffic using a Markov modulated process. Using these characterizations as a reference we continuously monitor traffic and employ large deviations and decision theory results to ldquocomparerdquo the empirical measure of the monitored traffic with the corresponding reference characterization, thus, identifying traffic anomalies in real-time. Our experimental results show that applying our methodology (even short-lived) anomalies are identified within a small number of observations. Throughout, we compare the two approaches presenting their advantages and disadvantages to identify and classify temporal network anomalies. We also demonstrate how our framework can be used to monitor traffic from multiple network elements in order to identify both spatial and temporal anomalies. We validate our techniques by analyzing real traffic traces with time-stamped anomalies.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:17 ,  Issue: 3 )