By Topic

Feature selection and classification of prO-TOF data based on soft information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Lin Zhang ; Sch. of Inf. & Electr. Eng., China Univ. of Min. & Technol., Xuzhou ; Jian-Qiu Zhang ; Xiao-Bo Zhou ; Hong-Hui Wang
more authors

In this paper, we introduce a feature selection and classification method for prOTOF Mass Spectrometry (MS) data profiles of diseased and healthy patients. The method is based on a special statistical measure, which quantifies the probability of the existence of peptidepeaks. A special ranking score that is based on the statistical measure is used for selecting features that can best distinguish diseased and healthy data profiles. Based on the selected features, we applied a variety of classification algorithms and the results are compared with that of a method which selects features only based on peak heights. The results show a significant improvement in classification error rate with our proposed method.

Published in:

Machine Learning and Cybernetics, 2008 International Conference on  (Volume:7 )

Date of Conference:

12-15 July 2008