By Topic

An improved mean shift tracking method based on nonparametric clustering and adaptive bandwidth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhuo-Lin Jiang ; School of Computer Science & Engineering, South China Univ. of Tech., Guangzhou, 510640, China ; Shao-Fa Li ; Xi-Ping JIa ; Hong-Li Zhu

An improved mean shift method for object tracking based on nonparametric clustering and adaptive bandwidth is presented in this paper. Based on partitioning the color space of a tracked object by using a modified nonparametric clustering, an appearance model of the tracked object is built. It captures both the color information and spatial layout of the tracked object. The similarity measure between the target model and the target candidate is derived from the Bhattacharyya coefficient. The kernel bandwidth parameters are automatically selected by maximizing the lower bound of a log-likelihood function, which is derived from a kernel density estimate using the bandwidth matrix and the modified weight function. The experimental results show that the method can converge in an average of 2.6 iterations per frame.

Published in:

2008 International Conference on Machine Learning and Cybernetics  (Volume:5 )

Date of Conference:

12-15 July 2008