By Topic

A novel anomaly detection approach based on data field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hong-Yu Yang ; Sch. of Comput. Sci., Civil Aviation Univ. of China, Tianjin ; Li-Xia Xie ; Feng Xie

This paper presents a new approach to detecting attack activities. In this method, network connections were transformed into data points in the predefined feature space. The influence function was designed to quantify the influence of an object and, further, the data field was divided into positive field and negative field according to the source pointpsilas category. To perform classification, all the labeled training samples were regarded as source points and a data field was built in the feature space. The influence felt by given testing point in the data field was calculated and its class was judged according to the sign and magnitude of the influence in detecting process. Experimental results demonstrate that our approach has good detection performance.

Published in:

Machine Learning and Cybernetics, 2008 International Conference on  (Volume:2 )

Date of Conference:

12-15 July 2008