Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Automated Trace Analysis of Discrete-Event System Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kemper, P. ; Dept. of Comput. Sci., Coll. of William & Mary, Williamsburg, VA ; Tepper, C.

In this paper, we describe a novel technique that helps a modeler gain insight into the dynamic behavior of a complex stochastic discrete event simulation model based on trace analysis. We propose algorithms to distinguish progressive from repetitive behavior in a trace and to extract a minimal progressive fragment of a trace. The implied combinatorial optimization problem for trace reduction is solved in linear time with dynamic programming. We present and compare several approximate and one exact solution method. Information on the reduction operation as well as the reduced trace itself helps a modeler to recognize the presence of certain errors and to identify their cause. We track down a subtle modeling error in a dependability model of a multi-class server system to illustrate the effectiveness of our approach in revealing the cause of an observed effect. The proposed technique has been implemented and integrated in Traviando, a trace analyzer to debug stochastic simulation models.

Published in:

Software Engineering, IEEE Transactions on  (Volume:35 ,  Issue: 2 )