By Topic

Evaluation of Stereo Matching Costs on Images with Radiometric Differences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heiko Hirschmuller ; Institute of Robotics and Mechatronics, Wessling ; Daniel Scharstein

Stereo correspondence methods rely on matching costs for computing the similarity of image locations. We evaluate the insensitivity of different costs for passive binocular stereo methods with respect to radiometric variations of the input images. We consider both pixel-based and window-based variants like the absolute difference, the sampling-insensitive absolute difference, and normalized cross correlation, as well as their zero-mean versions. We also consider filters like LoG, mean, and bilateral background subtraction (BilSub) and nonparametric measures like Rank, SoftRank, Census, and Ordinal. Finally, hierarchical mutual information (HMI) is considered as pixelwise cost. Using stereo data sets with ground-truth disparities taken under controlled changes of exposure and lighting, we evaluate the costs with a local, a semiglobal, and a global stereo method. We measure the performance of all costs in the presence of simulated and real radiometric differences, including exposure differences, vignetting, varying lighting, and noise. Overall, the ranking of methods across all data sets and experiments appears to be consistent. Among the best costs are BilSub, which performs consistently very well for low radiometric differences; HMI, which is slightly better as pixelwise matching cost in some cases and for strong image noise; and Census, which showed the best and most robust overall performance.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 9 )