By Topic

P³ & Beyond: Move Making Algorithms for Solving Higher Order Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kohli, P. ; Microsoft Res., Cambridge, UK ; Kumar, M.P. ; Torr, P.H.S.

In this paper, we extend the class of energy functions for which the optimal alpha-expansion and alphabeta-swap moves can be computed in polynomial time. Specifically, we introduce a novel family of higher order clique potentials, and show that the expansion and swap moves for any energy function composed of these potentials can be found by minimizing a submodular function. We also show that for a subset of these potentials, the optimal move can be found by solving an st-mincut problem. We refer to this subset as the Pn Potts model. Our results enable the use of powerful alpha-expansion and alphabeta-swap move making algorithms for minimization of energy functions involving higher order cliques. Such functions have the capability of modeling the rich statistics of natural scenes and can be used for many applications in Computer Vision. We demonstrate their use in one such application, i.e., the texture-based image or video-segmentation problem.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 9 )