By Topic

Maximizing Unavailability Interval for Energy Saving in IEEE 802.16e Wireless MANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tuan-Che Chen ; Nat. Tsing Hua Univ., Hsinchu ; Jyh-Cheng Chen ; Ying-Yu Chen

This paper presents an energy conservation scheme, Maximum Unavailability Interval (MUI), to improve the energy efficiency for the Power Saving Class of Type II in IEEE 802.16e. By applying the Chinese Remainder Theorem, the proposed MUI is guaranteed to find the maximum Unavailability Interval, during which the transceiver can be powered down. We also propose new mathematical techniques to reduce the computational complexity when solving the Chinese Remainder Theorem problem. Because the computational complexity is reduced significantly, the proposed MUI can be practically implemented in real systems. The proposed MUI is fully compatible with the 802.16e standard. It provides a systematic way to determine the start frame number, one of the important parameters defined in the standard. In addition to analyzing the computational complexity, simulations and experiments are conducted to evaluate the performance of the proposed algorithms.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 4 )